Билет 12

Теоретический вопрос:
Проверка принадлежности точки выпуклому многоугольнику

Задача L

Дан невырожденный треугольник ABC, заданный координатами своих вершин A, B и C.

Найти расстояние от точки пересечения медиан до прямой, содержащей сторону AB.

Входные данные. Вводятся шесть чисел - координаты точки A, точки B и точки C. Все координаты - целые, по модулю не превосходящие 1000.

Выходные данные. Выведите искомое расстояние

Пример входных данныхПример выходных данных
1 
1
7 
2
3 
8
2.19198649740476E+0000

Задача O

Вводятся 8 чисел Ax, Ay, Bx, By, Cx, Cy, Dx, Dy - координаты концов двух отрезков AB и CD.

Найдите расстояние между этими отрезками.

Напомню, что расстояние между фигурами - это наименьшее из расстояний между их точками (не обязательно граничными).

Примеры входных данныхПримеры выходных данных
0
1
2
1
1
0
1
2
0
0
0
2
0
3
0
4
0
1.0